Code: 20BS1104

I B.Tech - I Semester - Regular Examinations - JULY 2021

APPLIED PHYSICS (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

<u>UNIT – I</u>

a) Prove that F= - grad V.
 b) What are damped harmonic oscillations? Derive equation for damped harmonic oscillations.
 OR
 a) Distinguish between conservative and non-conservative forces.
 b) What is simple harmonic motion? Derive the equation of SHM.
 7 M

UNIT – II

3. a) Write a short note on Poisson's ratio.b) Discuss the elastic behavior of the material using stress-strain diagram.8 M

OR

4.	a)	Write the differences between elasticity and plasticity.	6 M
	b)	Discuss the different factors affecting elasticity of a	
		material.	8 M
		<u>UNIT-III</u>	
5.	a)	Examine the heat conduction mechanism in solids.	6 M
	b)	With neat sketch, explain the Forbes method to determine the coefficient of thermal conductivity of the	
		good conducting materials.	8 M
		OR	
6.	a)	Explain the fundamental heat transfer mechanisms.	6 M
	b)	With neat sketch, explain Lee's disc method to	
		determine the coefficient of thermal conductivity of the	
		bad conducting materials.	8 M
		<u>UNIT – IV</u>	
7.	a)	State and derive Weber-Fechner law.	6 M
	b)	Write the basic requirement for acoustically good hall. OR	8 M
8.	a)	What is absorption coefficient? Obtain the equation to	
		estimate absorption coefficient of a material in a room.	8 M
	b)	Discover the total absorbing power of all the surfaces in	
		the hall assume that the hall with dimensions	
		16 x 10 x 10 cubic meter is found to have reverberation	
		time 4 seconds.	6 M

$\underline{UNIT-V}$

9.	a)	With a neat sketch, describe the principle and working	
		mechanism of temperature sensor.	8 M
	b)	Define Sensor. Write any four important applications of	
		sensors.	6 M
		OR	
10.	a)	Describe the construction and working of fiber optic	
		sensor of stress and force.	8 M
	b)	Explain the construction and working of Displacement	
		sensor.	6 M